Feedback zu Aufgabe 10 / Feedback concerning task no. 10

  • Ich kann gerade nicht nachvollziehen, wie diese Aufgabe teilweise als schön einfache Aufgabe zum Wochenanfang eingeschätzt wird. Ich denke, dass sie eine der schwersten der letzten drei Jahre ist. Trotzdem ist die Aufgabe sehr interessant!

    Ich finde eine Begründbare Lösung zu finden ist einfach. Sich von deren Plausibilität zu Überzeugen auch. Es bleibt aber eine Unsicherheit, weil der (Mathematische) Beweis nicht gelingt.

  • Ich fand diese Aufgabe auch eher schwierig. Eine Idee hatte ich nach gefühlten 2 Minuten, aber der mathematisch exakte Beweis hat mich (auf Zettel und Papier) nochmal 2 Stunden gekostet - er ist zwar am Ende nicht so lang, aber ich konnte natürlich auch nicht geradlinig vorgehen. Das Überprüfen dieses Beweises mittels elektronischer Krücke hat dann nochmal 2h gedauert, und jetzt bin ich mir sicher, keinen Fehler drin zu haben. Schwierigste Aufgabe der letzten drei Jahre würde ich jetzt nicht sagen, aber schon obere 10%, weil ich ordentlich umdenken musste, um einen Beweis hinzubekommen. Definitiv aber die schwierigste Aufgabe dieses Jahres bisher.

  • Ich kann gerade nicht nachvollziehen, wie diese Aufgabe teilweise als schön einfache Aufgabe zum Wochenanfang eingeschätzt wird. Ich denke, dass sie eine der schwersten der letzten drei Jahre ist. Trotzdem ist die Aufgabe sehr interessant!

    Jeder hat eben unterschiedliche Stärken und Präferenzen. Ich habe in den letzten Jahren auch oft genug im Forum lesen müssen, wie einfach eine Aufgabe, an der ich am Verzweifeln war, angeblich sei. Manchmal habe ich das im Januar nach Ansehen der Musterlösung genauso gesehen, manchmal habe ich selbst dann noch gedacht 'Wie soll man denn darauf kommen?'.

    Und manchmal hat man einfach selber einen Denkfehler drin, der eine Aufgabe einfacher erscheinen lässt als sie ist. ;)

    Vielleicht liegt dir die nächste Aufgabe ja wieder besser.

  • Ich finde diese Aufgabe auch ziemlich schwierig. Eine Strategie zu finden ist hier nicht das Problem. Habe nur irgendwie einen Hänger, wenn es um den Beweis der Optimalität geht. Ich logge das jetzt erstmal so ein und werde (in der Hoffnung, dass meine Antwort richtig ist) eine Nacht darüber schlafen. Wahrscheinlich sehe ich hier den Wald vor lauter Atomen nicht.


    Eine Sache wundert mich aber schon. Wie findet der Herr Ruprecht in einem Topf mit unendlich vielen Elementen genau das heraus, das ein gesuchtes Gewicht hat? Und wie schafft er das unendlich oft? Hatte er etwa Hilfe von einem gewissen Herrn Norris?


    Auf jeden Fall war das eine schöne Aufgabe. Genau wegen solcher Knobeleien mache ich diesen Kalender (erst recht, wenn man erst ewig nachdenkt und die Lösung dann ein Zweizeiler ist, wie ja hier manche behaupten).

    Unterhalten sich zwei Kerzen. Sagt die eine: "Ist Wasser gefährlich?". Darauf die Andere: "Davon kannst Du ausgehen.".

  • Das neu entdeckte Element xmasium ist aus physikalisch-chemischer Sicht besonders interessant. Nicht nur, dass unendlich viele Isotope (gleiches Element, aber unterschiedliches Atomgewicht) existieren, es existiert sogar ein Isotop mit Atomgewicht 0. Bei allen bislang bekannten Elementen sind die bekannten Isotope endlich, und ein Isotop mit Atomgewicht 0 ist noch gar nicht entdeckt worden. Da ist der Nobelpreis sowohl für Chemie als auch für Physik fast schon sicher, würde ich sagen. ;)

    Nun ja, es könnte ja sein, dass diese Atome nur die "Ruhemasse" Null besitzen, aber niemals in Ruhe sind. Das wird dann allerdings für Knecht Ruprecht etwas schwerer diese Atome zu "fangen". :)

  • :) Eine schöne Aufgabe, obwohl man ganz schön lang tüffteln muss. Denn selbst wenn man eine Strategie für ein N findet, heißt das ja noch lange nicht, dass diese Strategie (so es sie gibt) auch das Optimum darstellt.

    Aber was den Aufgabentext und die Länge der Antworten angeht ist die Aufgabe eine echte Wohltat gegenüber der gestrigen Aufgabe, meine "Gebete" wurden also prompt erhört.

    Weiter so, ein großes Lob an die Aufgabensteller.

  • Mir ging es erst wie den meisten hier, hab schnell eine Lösung gefunden, aber keine Idee gehabt, wie man das zeigen soll. Lustigerweise hat es für mich beim Lesen von Saurons Post zu Beginn des Feedback-Fadens, dass er noch keinen Beweis gefunden hat, Klick gemacht. Wie er das gemacht hat weiß ich auch nicht, wenn ich tippen müsste, wäre es wohl, weil er es als Optimalitätsbeweis bezeichnet hat.


    Wenn man ihn dann hat, ist der Beweis überraschent simpel und elegant. Schöne Aufgabe!

  • Ja, wirklich ganz coole Aufgabe!

    Mich ärgert nur, dass ich gestern zu wenig Zeit hatte. Dann dachte ich, ich probier schnell ein bisschen rum, und hab - ohne richtig zu überlegen - eine Lösung gewählt, die für die ersten paar Schritte ganz gut funktioniert hat.

    Und wie es (bei mir) manchmal so ist - man schläft eine Nacht drüber, und plötzlich merkt man erst die mathematische Struktur dahinter - und wie einfach es eigentlich gegangen wäre, die RICHTIGE Lösung zu finden. ;(

  • Ich war im Urlaub und muss jetzt die Aufgaben der letzten 10 Tage nachholen... =O


    Da kommt mir diese Aufgbe gerde recht. Die kann man sich ohne Zettel und Bleistift z.B. in der Badewanne überlegen. Für mich deshalb auch eine der schönsten Knobelaufgaben der letzten Jahre (abgesehen natürlich von den Mützen...). ;)